(2x^3-3x^2-18x-8)/(3x^2-12)

Simple and best practice solution for (2x^3-3x^2-18x-8)/(3x^2-12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^3-3x^2-18x-8)/(3x^2-12) equation:


D( x )

3*x^2-12 = 0

3*x^2-12 = 0

3*x^2-12 = 0

3*x^2 = 12 // : 3

x^2 = 4

x^2 = 4 // ^ 1/2

abs(x) = 2

x = 2 or x = -2

x in (-oo:-2) U (-2:2) U (2:+oo)

(2*x^3-(3*x^2)-(18*x)-8)/(3*x^2-12) = 0

(2*x^3-3*x^2-18*x-8)/(3*x^2-12) = 0

2*x^3-3*x^2-18*x-8 = 0

2*x^3-3*x^2-18*x-8 = 0

{ 1, -1, 2, -2, 4, -4, 8, -8 }

1

x = 1

2*x^3-3*x^2-18*x-8 = -27

1

-1

x = -1

2*x^3-3*x^2-18*x-8 = 5

-1

2

x = 2

2*x^3-3*x^2-18*x-8 = -40

2

-2

x = -2

2*x^3-3*x^2-18*x-8 = 0

-2

x+2

2*x^2-7*x-4

2*x^3-3*x^2-18*x-8

x+2

-2*x^3-4*x^2

-7*x^2-18*x-8

7*x^2+14*x

-4*x-8

4*x+8

0

2*x^2-7*x-4 = 0

DELTA = (-7)^2-(-4*2*4)

DELTA = 81

DELTA > 0

x = (81^(1/2)+7)/(2*2) or x = (7-81^(1/2))/(2*2)

x = 4 or x = -1/2

x in { -1/2, 4, -2}

(x+1/2)*(x-4)*(x+2) = 0

((x+1/2)*(x-4)*(x+2))/(3*x^2-12) = 0

( x+1/2 )

x+1/2 = 0 // - 1/2

x = -1/2

( x+2 )

x+2 = 0 // - 2

x = -2

( x-4 )

x-4 = 0 // + 4

x = 4

x in { -2}

x in { -1/2, 4 }

See similar equations:

| 1/5m-20 | | x^3-4x=80 | | -13x+4=-100 | | b+15=8 | | 0=b^2-24b | | -8y+3x=-17 | | 10x+3=5x+5 | | 1c=4/3 | | e-18/11=16/11 | | 2.9W=6.38 | | 5t^2+100t=0 | | R^2-4r-100=-4 | | 4(5x+2)-3(3x-1)= | | 3/4y+4=9 | | 28283883939399499-288282828=x | | 6=X+2x-3x-6 | | -1/4w=13 | | 10x-148=56-2x | | -8x+3y=-17 | | -2x-138=7x+60 | | 49=7(x+3) | | M/5.2=7/5.2 | | 37/10Q=1 | | Loge-m=loge(m+10) | | 9x-19=12x+17 | | 4.8+c=7.34 | | (x+2)45=440 | | P/4.9=5.3 | | (w+9)4=27 | | 8x^2+5x+1=0 | | 3(4x+5)-2(2x-1)= | | x^2-18x-14=0 |

Equations solver categories